向量嵌入
NUWA 提供兼容 OpenAI 标准的高效向量嵌入方案
调用指引
NUWA 的嵌入模型能够高效地将文本或文档内容转化为可检索的向量数据,广泛应用于 RAG 问答系统和智能客服。无论文本还是文档,均可一键生成嵌入,显著提升语义处理表现。
通用 Embedding
- 通用Embedding
- 文档读取Embedding
from openai import OpenAI
import os
client = OpenAI(
api_key="NUWA_API_KEY", # 换成你在后台生成的 Key "sk-***"
base_url="https://api.nuwaapi.com/v1"
)
response = client.embeddings.create(
input="Your text string goes here",
model="gemini-embedding-001"
)
print(response.data[0].embedding)
from openai import OpenAI
import os
client = OpenAI(
api_key="NUWA_API_KEY", # 换成你在后台生成的 Key "sk-***"
base_url="https://api.nuwaapi.com/v1"
)
# Read file
def read_whimery_file():
try:
with open('yourpath/file.md', 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
print(f"Error reading file: {e}")
return None
# Read the content and create embeddings
content = read_whimery_file()
if content:
response = client.embeddings.create(
input=content,
model="gemini-embedding-001"
)
print("File content successfully processed into embeddings")
print(f"Embedding dimensions: {len(response.data[0].embedding)}")
print("First 10 embedding values:", response.data[0].embedding)
else:
print("Failed to read file content")
可用模型
- gemini-embedding-001
- gemini-embedding-exp-03-07
- text-embedding-3-large
- text-embedding-3-small
- text-embedding-ada-002
- jina-embeddings-v4
- jina-embeddings-v3
- jina-embeddings-v2-base-code
- text-embedding-v4
- Qwen/Qwen3-Embedding-0.6B
- doubao-embedding-large-text-240915
- doubao-embedding-text-240715